
Machine learning processing of microalgae flow
cytometry readings: illustrated with Chlorella

vulgaris viability assays
Victor Pozzobon1�, Wendie Levasseur1, Elise Viau1, Emilie Michiels1, Tiphaine Clément2, and Patrick Perré1

1LGPM, CentraleSupélec, Université Paris-Saclay, SFR Condorcet FR CNRS 3417, Centre Européen de Biotechnologie et de Bioéconomie (CEBB), 3 rue des Rouges
Terres 51110 Pomacle, France

2URD Agro Biotechnologies Industrielles (ABI)-AgroParisTech, 3 rue des Rouges Terres, F-51110 Pomacle, France

A flow cytometry viability assay protocol is proposed and ap-
plied to model microalgae Chlorella vulgaris. The protocol relies
on concomitant dual staining of the cells (Fluorescein DiAcetate
(FDA), Propidium Iodide (PI)) and machine learning process-
ing of the results. Protocol development highlighted that work-
ing at 4 °C allows to preserve the stained sample for 15 minutes
before analysis. Furthermore the inclusion of an extracellular
FDA washing step in the protocol improves the signal to noise
ratio, allowing better detection of active cells. Once established,
this protocol was validated against 7 test cases (controlled mix-
tures of active and non-viable cells). Its performances on the
test cases is good: -0.19 %abs deviation on active cell quantifica-
tion (processed by humans). Furthermore, a machine learning
workflow, based on DBSCAN algorithm, was introduced. Af-
ter a calibration procedure, the algorithm provided very satis-
factorily results with -0.10 %abs deviation compared to human
processing. This approach permitted to automate and speed up
(15 folds) cytometry readings processing. Finally, the proposed
workflow was used to assess Chlorella vulgaris cryostorage pro-
cedure efficiency. The impact of freezing protocol on cells via-
bility was first investigated over 48 hours storage (-20 °C). Then
the most promising procedure (pelleted, -20 °C) was tested over
one month. The observed trends and values cell in viability loss
correlate well with literature. This shows that flow cytometry is
a valid tool to assess for microalgae cryopreservation protocol
efficiency.
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1. Introduction

Mankind is currently confronted to several challenges, the
most striking ones being resources dwindling and climate
change. In both cases, microalgae can be of assistance thanks
to their variety of applications ranging from food and feed
to carbon neutral biofuel productions (1, 2). In addition,
over the recent years, microalgae have risen as a promis-
ing way to produce high added-value molecules such as pig-
ments, essential fatty acids, specific carbohydrates, antiox-
idant (3). While food and feed productions rely on classi-
cal culture protocols, biofuel and high added-value molecules
productions sometimes require stressing strategies to achieve
proper yields (nitrogen deficiency and/or excessive light (4)).
Furthermore, once produced those molecules have to be ex-

tracted from microalgae, which is not an easy task. Indeed
molecules recovery can be highly endergonic as it is hindered
by cell wall resistance (5). In all these aspects of microal-
gal culture, it is important to monitor cells viability. On one
hand, it ensures product quality (food and feed), confirms that
cells are coping with stressful conditions (biofuel and high
added value molecules production). On the other hand, it val-
idates the efficiency of cell disruption techniques (molecules
extraction).

Different types of viability assay can be found: serial dilu-
tion followed by agar plating and colony counting (6), Evans
blue or Nile red staining (7, 8), enzyme digestion and micro-
scope counting (9), ATP assay (10), cytometry analysis (11).
While the first one is time consuming as it requires to wait
for a population to grow, it does not require much manpower.
The second and third ones deliver results faster, at the price of
Malassez cell counting and may be biased by human subjec-
tivity. The fourth one requires numerous manipulations. The
last one delegates this task to a machine. It allows to anal-
yse thousands of cells per second, still proper protocols for
both flow cytometer operation and results analysis have to be
developed. While the first type of viability assays are nowa-
days routinely implemented, flow cytometry is still rising into
power in microalgal biotechnology laboratories (12, 13).

Flow cytometry analysers revolve around two key tech-
nologies: hydrodynamic focusing and optoelectronic. Hy-
drodynamic focusing allows to individualize cells from a sus-
pension and to carry those single cells into a laser beam. At
this point, cells interacts with this laser through scattering
mechanisms. Forward scattering is tied to the cell size, while
side scattering is linked to cell cytoplasm complexity, as it
originates from beam deviation by organelles. The resulting
luminous signals are acquired by photomultipliers and sent
to a computer. In addition to those simple informations, light
can be collected on different wavelength channels using pass-
band filters. This allows to detect cell fluorescence. This flu-
orescence can be of natural origin (pigments) or induced by
fluorescent chemicals acting as cell status probes. This tech-
nique induces a limitation that is that analysed microalgae
strains have to be somewhat mechanical stress tolerant.

Flow cytometry and Fluorescence Assisted Cell Sorting
(usually referred to as FACS) are well established approaches
in mammalian biology field (14). For example, cells cryop-
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reservation efficiency assay via flow cytometry is routine for
this community (15, 16), while no mention of this approach
can be found in microalgal cryopreservation community (ex-
cept one on coral (17). The transfer of flow cytometry and
FACS to microalgal biotechnology as a whole would require
both protocol development and data analysis methods, in ad-
dition to equipping laboratories.

Regarding protocol development, several authors have al-
ready communicated about flow cytometry assays adapted to
microalgae for specific invetsigations. These assays classi-
cally feature one or two fluorescent dyes that deliver key in-
formation. The most popular ones being Fluorescein DiAc-
etate (FDA) which indicates esterase activity inside of the
cell, and Propidium Iodide (PI) which probes cell membrane
permeability. Briefly, FDA is a non-fluorescent non-polar es-
ter, able to pass through cell membranes, regardless the cell
status. Once inside the cell, non-specific esterases hydrolyze
the ester bonds of the FDA producing two acetates and one
fluorescein. This latter molecule fluoresces green when illu-
minated by blue light (18). PI is a fluorescent dye, blocked by
functional membranes, that intercalates with double stranded
nucleic acids which produces red fluorescence when excited
by blue light (19). The protocol reported in this work can
be seen as an improvement over (20) and (21) works with an
emphasis on operating temperature and FDA washing.

Regarding data analysis, first of all, the structure of the data
themselves has to be acknowledged. Indeed, for each cell at
least five parameters are collected: Forward SCattering (FSC,
proxy of size), Side SCattering (SSC, proxy of cytoplasm
complexity), as well as three fluorescence channels, or more -
all this over thousands of cells per second. Hence those data
are intrinsically dense and complex to analyse. Classically,
populations are identified using 2D plots, and successive gat-
ing. While helpful, this strategy requires both human time
and expertise. In order to automate, speed up and make the
process user-independent, machine learning processing was
introduced in mammalian cell flow cytometry readings anal-
ysis (22). Such algorithms are capable of encompassing all
the parameters describing a cell at once and discover emerg-
ing patterns, usually population clusters.

The purpose of this work is to deliver an updated dual
staining procedure and introduce machine learning process-
ing of flow cytometry readings to the microalgal biotechnol-
ogy community. The context for this study was Chlorella
vulgaris viability assays. First, the flow cytometry protocol
is detailed, then is validated against highly controlled condi-
tions. In a second step, using these test conditions, machine
learning processing is compared to human manual process-
ing. As illustration, this workflow is applied to cell cryostor-
age survival, as it has not been done for microalgae. Finally,
results are compared with classical literature findings.

2. Materials and methods

2 1. Strain & culture

The strain used for this study was Chlorella vulgaris (CV
211-11b) obtained from SAG Culture Collection, Germany.

Cells were subcultured using BBM medium (23). The pas-
saging procedure was characterized by 1/100 sampling, 250
mL flasks, 50 mL culture medium, 75 µmol photon m−2 s−1,
20 °C, duplicate. Cells produced by subculturing were used
to develop the protocol. Still, variations may arise from one
subculture to the other. This could induce a bias in the re-
sults and prevent proper data comparison. Hence, in order to
avoid this pitfall, the results presented hereinafter were pro-
duced using cells coming from a single batch. This batch was
produced using a 5-liter photobioreactor. The growth condi-
tions were: BBM medium, average light of 300 µmol photon
m−2 s−1, 0.1 vvm 2.5 %CO2-enriched air, Rushton impeller
at 100 rpm, 20 °C. Culture was stopped at the end of expo-
nential phase, leaving cells no time to age. Cells were stored
at 4 °C in the dark for one week. This allowed to conduct all
the tests with cells originating from the same batch.

2 2. Flow cytometry assay
The viability assays were conducted with Sysmex CyFlow
Space flow cytometer, mounted with blue laser (488 nm),
FSC, SSC detectors as well as three fluorescence channels
(FL1 to FL3, 536/40, 590/50 and 675/30 nm respectively).
This setup allows to acquire three different signals from
unstained Chlorella vulgaris cells: size (FSC), complexity
(SSC) and chlorophyll auto-fluorescence (FL3). In addition
to those basic informations, FDA (FL1) and PI (FL2) were
chosen as viability probes for the study. Indeed, they show
complementary properties which enable to characterize the
viability of the whole population of microalgae. Namely,
FDA identifies living cells (valid estarase activity) from non-
viable cells and debris, PI permits the differentiation between
non-viable cells (compromised membrane permeability and
DNA presence) and debris. As aforementioned, the reported
protocol is a variation over (20) and (21) proposed methods.
During the protocol development several variations were in-
vestigated. Only the key findings of those preliminary tests
are reported here, before introducing the protocol itself.

2.2.1. Stock and working solutions. The stock solution of
FDA (Sigma Chemicals F-7378) was prepared by dissolving
100 mg of FDA into 100 mL of DMSO (Fischer scientific,
>99), yielding a 12 mM stock solution. It was then aliquoted
in opaque 2 mL Eppendorf tubes and stored at -20 °C. A spe-
cial care was taken during all these manipulations to avoid
FDA and DMSO light exposure. The working solution was
prepared by diluting 100 µL of FDA stock solution into 10
mL of milliQ water at 4 °C (100 fold dilution, 120 µM work-
ing solution). Since FDA is light- and thermo-sensitive, the
working solution was kept on ice in the dark to minimize its
degradation and fresh working solutions were made every 3
hours (following (24) recommendation).

The working solution of PI (Sigma Chemicals P-4170) was
prepared by dissolving 10 mg of PI into 10 mL of milliQ wa-
ter, yielding a 1.5 mM working solution. PI working solution
was stored in opaque vial at 4 °C.

2.2.2. Preliminary investigations. Among the investigated
operating parameters, the most influential ones were temper-

2 | Published in Journal of Applied Phycology Pozzobon et al. | Machine learning processing of flow cytometry readings



2.4 Thermal treatment - test cases

ature and FDA washing. Operating at 4 °C, and preserving
the sample in melting ice bath, improved results repeatability
and sample stability over time. Room temperature operation
yielded stained samples with moderate repeatability usable
for 5 minutes, while 4 °C operation yielded highly stable
stained samples usable for 15 minutes (see Supplementary
Materials). Furthermore, including a centrifuge run in order
to wash extracellular FDA considerably improved the signal
to noise ratio on FL1 detector. Other parameters, such as
FDA concentration (50 µM instead of 25 µM) or the use of
phosphate buffer vs. milliQ water had only marginal impact.

2.2.3. Dual staining procedure. First, the sample cell concen-
tration is acquired using particle counter (Beckman Coulter
Multisizer 4). Using the obtained value, sample cell concen-
tration is adjusted to about 40 106 cell mL−1 by dilution to
allow later pelleting. Then 780 µL of 40 106 Cell mL−1

cell suspension is introduced in 1.5 mL Eppendorf tube. To
this, 210 µL of the FDA working solution and 10 µL of the
PI stock solution are added (final volume of 1.0 mL). Right
after this step, the samples are introduced in 4 °C cooled cen-
trifuge. The incubation with the fluorochromes takes place
during the centrifugation (16000 g, 4 °C, 5 min). This step al-
lows both low temperature incubation and extracellular FDA
washing. After centrifugation, the supernatant is removed
and the pellet is resuspended in 1 mL of 4 °C milliQ water.
Finally, the resuspended cells are diluted with 4 °C milliQ
water to reach a concentration of 1.0 106 cell mL−1 (suit-
able for flow cytometry analysis according to manufacturer
recommendation) and sent to flow cytometer for analysis.

With this procedure, if need be, the final state samples can
be stored on ice, in the dark for 15 minutes before being pro-
cessed.

2.2.4. Flow cytometry analysis. Before every cell analysis,
the flow cytometer tubing was cleaned by processing 1 mL
of milliQ water. Then, cell sample was presented. Suspen-
sion flow rate was set at 1 µL s−1, photomultipliers gains
were set at 140, 230, 425, 500 and 410 for FSC, SCC, FL1 to
3, respectively. Then, 100 thousands events were acquired in
about 60 seconds.

To assess for analysis repeatability of the cytometer itself,
samples were first analysed in triplicates. As repeatability
was very good (below 1 % deviation in final population quan-
tification), only one flow cytometer run per sample was per-
formed.

Finally, before applying this protocol to actual samples, it
had to be challenged against controlled test cases (Sec. 2.4).

2 3. Machine learning processing
In our case, the aim of the machine learning processing was to
segregate the three populations (active cells, non-viable cells
and debris) automatically. In order to automate population
identification, machine learning scientists have developed a
specific type of algorithms: clustering algorithms. A popular
all-rounder algorithm of this category is DBSCAN (Density
Based Spatial Clustering of Applications with Noise)(25),
owing its success to its efficiency, simplicity and ability to

detect outliers. While numerous refinements exist, such as
grid introduction speed-up (26), we chose this algorithm in
its basic form for the sake of simplicity. The algorithm work-
ing principle is briefly reviewed here. The algorithm starts
by randomly picking a point, i.e. a flow cytometry event in
this case. Then, it determines the number of neighbouring
points in a given distance (called ε) from this first point. If
this number is higher than a given threshold (called N ), then
the point is considered as part of a cluster (if not, it is marked
as noise). Indeed, having N neighbours, or more, within an
ε distance means that density is high in the vicinity of the
selected point. Then the previously identified neighbouring
points go through the same procedure recursively. As long as
the algorithm finds points with high density neighbourhoods,
the cluster grows. A cluster is fully identified once this set of
neighbouring points is exhausted. Then, the algorithm picks
another point, outside of the identified cluster, and repeats the
procedure until all points are classified as part of a cluster or
noise.

The main weakness of this procedure is that, in all gener-
ality, ε and N parameters are cluster dependent, as together
those parameters form the density of the cluster. Therefore,
as our flow cytometry readings featured two clusters (active
and non-viable cells), a set of ε and N parameters should
be selected for each cluster. Luckily, as pointed out by the
authors of DBSCAN themselves, the sensitivity to N param-
eter is quite low. In our case, preliminary tests showed that a
value corresponding to 1000 events (1 % all the whole pop-
ulation) was providing satisfactory results. Thus a two-step
procedure with different ε parameters, was implemented in
order to better isolate one cluster from the other. It is diffi-
cult to identify proper ε parameter values beforehand, as it
would mean being able to assign a specific value cells clus-
ters densities. Thus, a screening was led to determine the
two best ε parameter values; one for each of the two clus-
ters (εactive for the active cells and εnon−viable for the non-
viable cells). The possible valued for εactive and εnon−viable
were explored within finite ranges. They were defined by
0.05 < εnon−viable < 0.5 and 0.05 < εactive < 0.7. Like
for assessing the quality of the experimental procedure, this
parameter screening required controlled test cases to be pro-
duced. These cases are described in the next Section.

From a technical point of view, the workflow was coded
under Python 3.6 programming language. DBSCAN imple-
mentation was directly drawn from Scikit Learn 0.22.1 ma-
chine learning framework (27).

2 4. Thermal treatment - test cases

Two objectives were associated with the production of the
test cases. The first one was to challenge the viability assay
procedure by comparing flow cytometer results (processed
by human and machine learning) to a known standard. The
second one was to calibrate DBSCAN workflow. The test
cases were built up by mixing controlled quantity of active
and non-viable cells.

Active cells processing by the proposed protocol resulting
in successful FDA staining, while no PI fluorescence could
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Fig. 1. The five acquired parameters for 50 % active, 50 % non-viable cells test case. Cluster identification: A - Active, N - Non-viable, N - Debris/Noise. Number of events:
100 thousands

be detected. In addition, staining the cells did not alter FSC
(size), SSC (complexity) and FL3 (chlorophyll) signal com-
pared to unstained cells.

Non-viable cells were produced by heat treatment (100 °C,
10 min, suspended, covered). Microscope observation con-
firmed that cell integrity was conserved. Running the pro-
tocol on non-viable cells resulted in successful PI staining
while FDA could not be found. In addition, FSC, SSC and
FL3 did not change compared to active cells.

The active/non-viable cells test case solutions were pro-
duced by volumetric mixing. The targeted active cells frac-
tions were: 20 %, 25 %, 40 %, 50 %, 60 % and 80 %, cover-
ing a broad range of configurations. Still, as flow cytometry
readings yields population in terms of number and not vol-
ume fractions, those volume fractions had to be converted
to number fractions. To do so, cells concentration in both ac-
tive and non-viable cells solutions was obtained from particle
counter. Active cells solution concentration was 50.55 106

Cell mL−1, while non-viable cells one was 49.72 106 Cell
mL−1. Thus knowing the concentration of the two mother
solutions, it was possible to calculate accurately the expected
fraction of active (or non-viable) cells.

Finally, flow cytometry results were analysed by three dif-
ferent human operators (not influenced by one another) as
well as the proposed machine learning algorithm.

2 5. Cell cryopreservation - illustration cases
Chlorella vulgaris survival to several cryopreservation proce-
dures was tested in order to both introduce flow cytometry in

microalgae cryopreservation field and assess the protocol ca-
pability. First of all, the impact of the storage vessel size was
examinated. Samples, made of cell suspension, were frozen
in 1.5, 15 and 50 mL tubes. Second, the impact of freezing
speed was investigated: samples were left to freeze at -20 °C,
or directly put into liquid nitrogen (-196 °C). Third, sample
preparation variations were introduced. Sample were either
pelleted (16000 g, 5 min, 4 °C) or supplemented, while sus-
pended, with glycerol (20 %vol) (28), or both.

After freezing, the sample were stored at -20 °C for 48
hours before being thawed at room temperature. Further-
more, in order to check for longer term survival, the most
promising sample (1.5 mL, pelleted, -20 °C freezing, see Sec.
3.4) was stored for 1 month before being analysed again.
Furthermore, in order to reproduce common cryopreserva-
tion assay procedure, cells were resuspended in 5 mL culture
medium and visually checked twice daily for signs of growth
(in triplicate for each sample, hence 9 flasks).

All the tests were carried out in triplicates.

3. Results

The tested cases unfolded smoothly. All flow cytometry read-
ings exhibited the two expected cell populations (active and
non-viable) and debris. In addition, results showed a good
run to run repeatability. As a consequence, results are illus-
trated using the case with the most challenging of the test
cases: the 50/50 active/non-viable cells mixture, median test
case hereinafter.
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3.1 Protocol output

Fig. 2. Lelt - FL2 vs. SSC map. Right - FL2 vs. FL1 map. Both for 50 % active, 50 % non-viable cells test case. Cluster identification: A - Active, N - Non-viable, N -
Debris/Noise. Colormap: blue to red, low to high density. Number of events: 100 thousands

3 1. Protocol output

Figure 1 reports the five parameters for the median test case.
As one can see, FSC and SSC signals feature two zones: one
for debris, the other one for cells (active and non-viable). FL1
and FL2 signal exhibits three peaks. On FL1 channel, the
lowest intensity peak corresponds to debris, the medium one
to non-viable cells and the strong one to active cells. On FL2
channel, the three peaks correspond to debris, active cells and
non-viable cells. Finally, FL3 signal only presents one peak
for both active and non-viable cells. The stability of FL3 sig-
nal is troubling and is alleged to be due to poor fluorescence
compensation during our experiments. While it is technically
possible to identify cluster from this type of raw presentation
of the results, 2D maps are still preferred.

Analysing further the median test case, Figure 2 presents
the FL2 vs. SSC (left) and FL2 vs. FL1 (right) maps. FL2 vs.

SSC map does not permit to draw a clear distinction between
clusters as only one of the two parameters is discriminant.
On the contrary, on the FL2 vs. FL1 map the three popula-
tions can be easily identified: active cells (high FL1 and low
FL2 values), non-viable cells (low FL1 and high FL2, values)
and debris (low FL1, low FL2). This highlights the interest
of a dual vs. single staining procedure. From a qualitative
point of view, the two cell clusters exhibit clear frontiers. In
addition, non-viable cells cluster appears denser than active
cells one. Finally, debris seems to host different sub-clusters
with low density and loose edges. These populations could be
made of cellular debris, particles in suspension or unstained
cells. Before moving further onward, the debris population
was analysed using a FSC strategy in order to isolate a po-
tential unstained cell population. Only the cells with FSC
signal higher than 7 were conserved. Results show that no

Fig. 3. FL2 vs. FL1 map for 50 % active, 50 % non-viable cells test case, cluster identified by the algorithm. Left: active cells, right: non-viable cells. Colormap: blue to red,
low to high density. εnon−viable = 0.4 and εactive = 0.5 Number of events: 100 thousands
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unstained cell population could be found (see Supplementary
Materials).

Finally, while clusters are fairly easily identifiable by hu-
mans, algorithm identification performances have to be anal-
ysed. Briefly, machine learning algorithm results are pre-
sented in Figure 3 left and right. The set of parameters used
to obtain these results is made explicit in the next Section. As
one can see, the algorithm is able to satisfactorily segregate
the cell clusters. In addition, it delimits the clusters clearly
and does not capture surrounding noise.

3 2. Algorithm parameter screening
As aforementioned, before starting performance comparison,
the dependence of the algorithm to εnon−viable and εactive
parameters had to be screened. The metrics used to quantify
algorithm performance is the Sum of Squared Errors (SSE)
defined as:

SSE =
7∑
i=1

(fa,i−fe,i)2 (1)

where fa,i is the reported active cell fraction of condi-
tion i and fe,i is the expected cell fraction of condition i,
both in percent. As εnon−viable and εactive parameters were
screened simultaneously, this procedure yielded a heat map
of SSE versus those two parameters (Fig. 4). For the sake
of readability, SSE map has been plotted in log scale (low-
est value corresponding to best performances). The proposed
procedure exhibits a wide range (0.24< εnon−viable < 0.48
and 0.30 < εactive < 0.65, in purple) of parameters couples
for which it yields good results (SSE below 10 %abs, cumula-
tive). Away from this cuvette, the SSE increases dramatically
fast. For low parameters values, the algorithm is not able to
detect cluster anymore. For high parameters values, it merges
the clusters together. Luckily the cuvette is wide enough to
provides results than can be considered repeatable and not
artefacts. As a consequence, the two parameters were chosen
in the middle of this stability zone, i.e. εnon−viable = 0.4 and
εactive = 0.5.

Fig. 4. Sum of Square Errors (SSE) as a function of εnon−viable and εactive

parameters over the 7 test cases. The lower the value, the better the couple of
εnon−viable and εactive segregate active cells and non-viable cells from one
another and debris

3 3. Human operators and algorithm performances -
test cases
The next step was to quantitatively analyse the results ob-
tained by flow cytometry. To do so, population fractions
obtained by flow cytometry readings processing were com-
pared to expected values set when preparing the test cases
(ranging from 20 to 80 % active cells). Figure 5 presents the
active cells fractions obtained for all the test cases. As one
can see, the three human operators and the algorithm were
able to quantify the cell populations very satisfactorily. Still,
this kind of display offers a broad overview of the quality of
the results but prevents proper error analysis. In order to go
further in depth, the results are plotted in term of relative dis-
crepancy to the particle counter value (Fig. 6). This plot em-
phasizes the mismatch between expected and obtained active
cell fractions. Human operators averaged deviation ranged
from -0.12 to -0.19 %abs, while the algorithm deviation is of
-0.25 %abs. Furthermore, those errors are within, or not far
away from, particle counter measurement uncertainty.
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3 4. Cell survival - illustration cases
Cell survival rates as a function of freezing vessel size and
freezing speed are reported in Figure 7. Regardless of the
vessel size, -20 °C freezing of suspended cultures yielded
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3.4 Cell survival - illustration cases

around 60 % survival rate. Liquid nitrogen freezing exhib-
ited poor performances, the best survival rate (24 %) being
achieved for 1.5 mL tubes. 15 mL tubes only left 3 % of the
culture active while using 50 mL tubes did not allowed any
cell to survive. From this, it could be concluded that -20 °C
freezing was better suited than nitrogen plunging. In addi-
tion, while not statistically significant for this freezing speed,
it could be concluded from liquid nitrogen results that 1.5 mL
tube would be better suited for this kind of experiments.

1.5 mL15 mL 50 mL
0

20

40

60

80

100

Vessel size

1
cy
cl
e
su
rv
iv
al

(%
)

Fig. 7. Cell survival rate versus freezing vessel size and freezing procedure. Light
gray: -20 °C freezing, dark gray: liquid nitrogen freezing. Error bars: standard
deviation (n=3)

In a second step, variation around this protocol were tested.
The impact of pelleting the culture and adding glycerol are
reported in Figure 8. Sole pelleting yielding the best 24-hour
survival rate, around 95 %. The addition of glycerol reduced
cells survival down to 54 ± 7 %, without pelletisation and to
51 ± 3 % with pelletisation.
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Fig. 8. Cell survival rate versus freezing protocol variations. Freezing procedure:
left at -20 °C. Error bars: standard deviation (n=3)

Finally, the most promising procedure (-20 °C freezing,
pellet, no glycerol, 1.5 mL tube) was analysed after one

month storage. The three tested samples yield 69, 52 and
35 % survival rate (52 ± 17 %). These latter cultures were
resuspended in BBM medium and incubated. The two first
became obviously green after 5 days (for the 6 flasks), while
the last one needed 7 days (for the 3 flasks), which is coherent
with flow cytometry results.

4. Discussion
The proposed dual staining protocol allowed both human op-
erators and machine learning algorithm to differentiate effi-
ciently active and non-viable cells on the test cases. It also
permitted to precisely quantify the relative amount of active
and non-viable cells in samples. Furthermore, when looking
closely at the deviations (Fig. 6), one can see that human op-
erators and machine learning algorithm always deviate in the
same direction. Thus, it is possible to infer that these devi-
ations are more likely due to experimental uncertainty when
preparing the test cases than intrinsic bias of the protocol.
Keeping this point in mind, the relevant criterion for the al-
gorithm performances evaluation should be the machine vs.
humans error, and not the machine vs. expectations. In this
case, the average algorithm error falls down to -0.10 %abs. A
point of note is that while processing the 7 cases takes around
15 minutes to a human being, it takes only 1 minute to the al-
gorithm. This represents an important time savings especially
when numerous readings have to be analysed. If streamlined,
this data processing procedure can be deployed by an opera-
tor who would not require flow cytometry expertise.

Unlike test cases, the cryostorage experiments had no ab-
solute reference, hence the obtained trends and values have
to be compared with other authors findings to assess from
their reliability. The first comment is that efficient long term
cryopreservation is an art per se (29–31). The minimum re-
quirements are strain adaptation to cold, two-step freezing
procedure and at least -80 °C storage. Luckily, actual strain
preservation was not the aim of this work. In order to observe
large viability decrease, we deliberately chose poor perform-
ing cryopreservation procedures.

Over one month, with our freezing protocol, both the trend
and the magnitude of the viability decrease (about 43 %) are
comparable to authors findings. (32) obtained 33 % viabil-
ity reduction rate of Chlorella vulgaris after 1 month storage
at -15 °C. In addition, three tested variations of the protocol
had detrimental effects on cells survival, namely: large freez-
ing vessel size, liquid nitrogen freezing and glycerol addition.
This calls for comments.

Cell survival to direct nitrogen plunging seems to be strain
dependent, with few species withstanding it (33). Further-
more, when successful, direct plunging yields poor results
(50 % slower growth than a two step-protocol) (34). Detri-
mental effects are thought to be associated to the presence
of supercooled water inside of the cell that will result in
mechanical damages in addition to the osmotic imbalance
induced by rapid freezing (29). These explain why -20
°C freezing yielded better results than direct liquid nitrogen
plunging in our case.

The detrimental effect of large capacity vessel during rapid
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freezing procedures has long been established (35). In our
case, combining 15 and 50 mL tubes with nitrogen cooling
was obviously excessive. Hence, it is not surprising that no
cell survived it. Furthermore, 1.5 mL vessel seems to also
be too large to ensure proper storage (24 % survival). It is
also not surprising, as point of comparison, crypropreserva-
tion straws volume are classically of 0.25 mL. Here again,
mechanical damages induced by ice crystals formation can
be an explanation. Small freezing vessels ensure rapid cool
down, promoting the formation of small ice crystals. On the
contrary, high capacity containers favour larger, hence more
damaging, ice crystals.

Findings regarding the addition of glycerol are mixed.
Some authors reported that it had no beneficial effects (36),
while others highlighted positive effects (37). Finally, as
pointed out in (38), the key point is the time allowed for glyc-
erol incorporation. Indeed, it has to be low enough to avoid
osmotic stress. The addition protocol was very quick in our
case, hence it may explained the observed adverse effect of
glycerol on cell viability.

All these observations allow to draw the conclusion that
flow cytometry is technically well suited for microlagae cry-
opreservation efficiency assays. One more argument advo-
cating for the introduction of flow cytometry in the microal-
gal cryopreservation community is the tremendous amount
of laboratory time to be saved using this technique. Indeed,
assessing cell viability by agar plating or growth rate com-
parison requires both time (order of week) and human effort
(several samples to be taken and analysed). On the contrary,
a flow cytometry run requires only quarter of a hour, plus
machine start-up and shutdown time.

5. Conclusion
A flow cytometry viability assay protocol has been proposed
and applied to model microalga Chlorella vulgaris. The pro-
tocol relies on concomitant dual staining of the cells using
Fluorescein DiAcetate (FDA), to probe esterase activity, and
Propidium Iodide (PI), to assess cell membrane integrity. Its
development highlighted the beneficial effects of two key op-
erating parameters. Working at 4 °C allowed to preserve the
stained samples for 15 minutes before analysis. The addition
of an extracellular FDA washing step improved the signal to
noise ratio.

This protocol was successfully validated against 7 test
cases (-0.19 %abs deviation) where known active/non-viable
cells fractions had to be retrieved. In addition to classical hu-
man processing, a machine learning workflow, based on DB-
SCAN algorithm, was introduced. After a calibration proce-
dure, the algorithm provided very satisfactorily results with
-0.10 %abs deviation compared to human processing. Fur-
thermore, this approach permits to speed up (15 folds) and
automated flow cytometry reading processing.

Finally, as illustration case, the dual staining procedure and
machine learning processing were used to assess Chlorella
vulgaris cryostorage procedure efficiency. The impact of
freezing on cells viability was first investigated over 48 hours
storage. Then the most promising procedure (pelleted, -20

°C) was tested over one month. The observed trends and val-
ues in viability loss correlates well with literature. Thus, one
can conclude that flow cytometry is well suited to assess for
microlagae cryopreservation efficiency.
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